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ABSTRACT 

We deal with distance matrices of real (this means, not necessarily integer) 
numbers. It is known that a distance matrix D of order n is tree-realizable if and only 
if all its principal submatrices of order 4 are tree-realizable. We discuss bounds for the 
number, denoted Qi( D), of non-tree-realizable principal submatrices of order i > 4 of 
a non-tree-realizable distance matrix D of order n 2 j, and we construct some distance 
matrices which meet extremal conditions on Qi( D). Our starting point is a proof that 
a non-tree-realizable distance matrix of order 5 has at least two non-tree-realizable 
principal submatrices of order 4. Optimal realizations (by graphs with circuits) of 
distance matrices which are not tree-realizable are not yet as well known as optimal 
realizations which are trees. Using as starting point the optimal realization of the 
(arbitrary) distance matrix of order 4, we investigate optimal realizations of non-tree- 
realizable distance matrices with the minimum number of non-tree-realizable principal 
submatrices of order 4. 
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1. INTRODUCTION 

AS in [5], we define a distance matrix of order n as a symmetric, 
nonnegative, square matrix D with entries dij such that, for i, i, k = 1,. . . , n, 
d,, = 0 and dii d djk + dki. 

Distance matrices are the most natural tool to describe finite metric 
spaces. They have been studied in several papers [l-11]. (Generalized 
distance matrices with negative entries have been studied in [B] but will not 
be considered here.) Moreover, realizations of distance matrices have a wide 
range of applications: perhaps the most recently found application is in a 
biological model for the analysis and synthesis of evolutionary trees [4]. 

Let G = (W, E) be a graph, W and E its vertex and edge sets, respec- 
tively; let V c W and 1 V ] = n. Consider a function f: E + Rt , where R+ is 
the set of the nonnegative real numbers. We say that f assigns a length or 
weight to each edge of G. For any i, jE W, we define the distance d(i, i) 
between i and j as the minimum value among sums Zf(e) taken over any 
path between i and i. We say that G realizes D if and only if, for some V, 
d(i, j) = dii for i, i = 1,. . . , n. If G is a realization of D, we call the vertices in 
V external and those in W-V internal. Trivially, G can be required to have 
no internal vertex of degree less than three. A realization is called optimal 
when the sum Zf(e) taken over E is minimal among all realizations of D. 

For later reference, we recall the following known results: 

THEOREM A [5,11]. Zf D has a tree realization, then this realization is 
optimal. 

THEOREM B [lo]. The matrix D has a tree realization if and only if its 
principal submutrices of order 4 have tree realizations. 

THEOREM C [5]. Zf G is an optimal realization of D, then to any vertex 
p E W of degree higher than one we can associate two vertices i, i # p such 
that dii = d(i, p)+ d(p, j). 

THEOREM D [5,9]. No optimal realization contains a triangle. 

THEOREM E [2,6]. A matrix of order 4 is tree-realizable if and only if, 
among the three sums d,, + d,, d,, + d,, d,, + d,, two are equal and not 
smaller than the third one. 

In the next two statements, D,(a) is a matrix obtained from D by 
subtracting the nonnegative number a from all entries in the ith row or the 
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ith column of D except for d,,. For p, r = 1,. . . ,n and p, r # i, we set 
ub = min{(d,, + di, - d,,)/2}. 

THEOREM F [5]. D,(a) is a distance matrix if and only if a < ub. 

THEOREM G [5]. An optimal realization G of D can be obtained from an 
optimal realization Gi(a) of D,(a), where as a;, by the following construc- 
tion: add a vertex i’ to Gi(a), and add an edge of length a linking i’ to the 
vertex i of G,(a). Moreover, if G,(a) is the unique optimal realization of 
Di(a), then G is the unique optimal realization of D. 

The operation which leads from G to G,(a) or from D to D,(a) is called a 
compactification by (the amount) a. A remark is that we may have ud = dij 
for some i # i. In such a case, by the minimality of ah, we obtain, for every 
T # i, dii + d,, - d, 2 dii + dii - dji = 2d,,, hence di, 3 dij + d,,; by the 
definition of a distance matrix, this means that, for every r # i, di, = dij + di,. 
We then say that i is a pendant index. Compactification by ub yields a matrix 
with dii = 0 and di, = di, for all p. 

Given a distance matrix, for each i which is not a pendant index 
compactify the matrix by uh. The matrix we obtain will be called fully 
compactified. 

An entry dii of D is called basic if no k # i, i exists such that dii = dik + d,_; 
otherwise dii is nonbasic. 

If D is fully compactified of order n with no pendant i, then, for each k, 
there is a pair p, r such that dkp + d,, = d,,. As immediate consequences, D 
has at least n basic entries and at least 2 nonbasic entries. The following 
matrix, for example, has 2 nonbasic entries: 

0 1 2 1 1 
1 0 1 2 1 
2 1 0 1 1 
1 2 1 0 1 

-1 1 1 1 o_ 

2. PRELIMINARY REMARKS 

Our first result follows immediately from Theorem E and the definitions. 

THEOREM 1. Let D and D,(a) be distance matrices. Then either they are 
both tree-realizable or they are both non-tree-realizable. 

Our next result is the following theorem. 
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FIG. 1 

THEOREM 2. The optimal realization (Figure 1) of a non-tree-realizable 
distance matrix of order 4 is a rectangle of vertices x1, x2, x3. x4 plus four 
pendant edges at its vertices with lengths t,, tz, 5, t4 ) 0. 

Proof. Let D* be non-tree-realizable. For i = 1,2,3,4, let ti = min{(d ;a 

+ 6, -d&)/2] over all pairs a, b. [By the remark in the Introduction, we 
may consider a # b; if ti = (d& + dTa - d&)/2 = d,*,, then, by that remark 
and Theorem E, D* is tree-realizable.] Let D be obtained from D* by 
successive compactifications by the amounts t,, tz, t3, t4. By Theorem 1, D is 
non-tree-realizable. Moreover, for each i, there exist a, b such that 

dai + dib = d,,. (0) 

For i = 1, suppose, without loss of generality, that 

4, + d,, = 4,. (1) 

It follows from (1) that the pair a, b which satisfies (0) for i = 2 can not be 
1,4. It can not be 3,4 either. In fact, if d,, + d,, = d,,, then, by (l), we 
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obtain 

which yields d 43 > d 23 and d 43 > d 32 f d 213 d 13; hence 

d,,+d,,-d,,‘O 

and 

d,,+d,,-d,,‘O. 

(2) 

(3) 

(4) 

From (1) it follows that d,, > d,,; hence 

d,, + d,,- d,,‘O. 

The inequalities (3), (4) and (5) contradict the hypothesis that D is compacti- 
fied. The pair a, b which satisfies (0) for i = 2 is therefore 1,3. We have thus 

d32 + dn = da. 

Note that the equality (6) is like (1) with its subscripts or indices increased 
by 1 mod 4. A similar argument with all subscripts increased by 1 mod 4 
proves that (6) implies 

and (7) in turn implies 

d,, + da = dn. 

Moreover, it follows from (l), (6), (7), and (8) that d,, = d,, and d,, = d,,. 
Any optimal realization of D must contain the paths represented as sides 

of the rectangle in Figure 2. Among such paths, no two adjacent ones can 
have an internal vertex in common: this would contradict one of the equalities 
(l), (6), (7),.or (8). Any two nonadjacent paths must also be disjoint. In fact, 
suppose the paths joining the pairs 1,2 and 4,3 have common internal 
vertices, denoted by xi. Since the paths joining 2,3 and 4,1 are pair-wise 
disjoint from them, we may choose an internal vertex x0 joined by single 
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1 %2 2 
0 0 

d41 d23 

6 0 

4 d34 3 

FIG. 2 

edges to 2 and 3 (see Figure 3). By (6) we have 

hence 

41, x,)+ 4%3) ~d(l,r,)+d(r,,2)+d,,; 

d(x,,3p=d(x,,2)+4,. 

1 2 

FIG. 3 
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This would imply 

and hence d,, = d,, + d,, which contradicts (7). Due to Theorem D, the 
graph of Figure 2 is therefore the optimal realization of D. By Theorem G, the 
proof of Theorem 2 is completed. n 

3. NON-TREE-REALIZABLE DISTANCE MATRICES OF ORDER 5 

From now on, ({ii,..., i,}) denotes a matrix D of order m; if we consider 
D as a principal submatrix of another matrix, say ({ 1,. . . , n}), then the entries 
of D are those in the rows and columns ii,...,& of ({l,...,n}). It is natural 
to denote the external vertices of any realization of D by ii,. . . ,i,. We also 
say that i,, . . . , i, are the indices of D. 

It follows from Theorem E that, if ({i, i, k, h}) is non-tree-realizable, then 
one of the sums dii+d,,, dik + dih, dih + dj, is strictly greater than the 
other two. If, say, dii + d,, is the largest sum, then we call indices i, i (and 
indices k, h too) opposite. 

THEOREM 3. A non-tree-realizable distance matrix D of order 5 has at 
least two non-tree-realizable principal s&matrices of order 4. 

Proof, By Theorem 1, we may consider only compactified matrices. 
First suppose that no pendant index exists. 
With no loss of generality, let ({ 1,2,3,4}) be non-tree-realizable, and d 51 

and d 52 basic. These basic entries are distances between 5 and two indices of 
({1,2,3,4}) which may be opposite (case 1) or nonopposite (case 2) in 
({I,2,3,4}). 

Case 1. The assumption means that 

du.+d~‘dn+dz4, (9) 

d,, + d,, ’ d,, + 4,. (10) 

If the equality d 54 + d,, = d, holds, then add d, to both sides of (9) and 
(10) and use this equality; by Theorem E, ({ 1,2,3,5}) is non-tree-realizable. 
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Suppose now that 

d,+d,,>d,. (11) 

Since d,, and d,, are basic, we have also 

d, + d,,‘dsz, 02) 

d,x + d,, ’ ds1. (13) 

Moreover, 

4, + d,, ’ d,,. (14) 

To prove (14) note that adding d 14 to both sides of d,, = d 34 + dd2 yields 

d,, + d,, = d,, + d,z + dr, A > d 34 + d 12, which contradicts (10). Similarly, 

d,, + d,, ’ da. (15) 

Since D is compactified, the inequalities (11) (12) (13) (14) (15) imply 

d,, + d,, = 4,. (16) 

Add now d,, and d,, to both sides of (12) and (13), respectively, and use 
(16); by Theorem E, (( 1,2,4,5}) is non-tree-realizable. 

Case 2. The assumption means that 

d,, + 44 ’ d,, + d.s,) 

d,, + d, ’ d,, + da. 

(17) 

(18) 

We assume also that d 53 and d 54 are nonbasic; otherwise the situation would 
be equivalent to case 1. 

If the equality d53=d51+d13 holds, then add d,, to both sides of (17) 
and (18) and use this equality; by Theorem E, ({2,3,4,5}) is non-tree-reahz- 
able. Similarly, if d 54 = d 52 + d 24, then ({ 1,3,4,5}) is non-tree-realizable. 

Suppose now that 

ds,+d,,‘ds, (19) 
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and 

d,,+d,>ds. (20) 

Since d, and d, are nonbasic, among the four equalities 

d,=d,,+d,,, (21) 

d,=d,+d,,, (21’) 

d,=d,,+d,,> (22> 

d,=d,+d,, (22’) 

we must have (21) or (21’) and (22) or (22’). Obviously, (21’) and (22’) can 
not occur simultaneously. Further, (21’) and (22) yield d, = d,, + d 14 + d,, 

ad,, + d,,, which contradicts (19). Similarly, (21) and (22’) yield d, = d,, 

+ d,, + ds4 2 d,, + d,,, which contradicts (20). Thus, (21) and (22) hold. 
We claim now that 

In fact, since djl and d,, are basic, d,, + d,, > d,, and d,, + dd5 > d,,. 
Moreover, by (22) and (19), ds4 + dd5 = ds4 + d,l + d,, 2 d,, + d,, > d,,. 
Finally, since d 14 + d,, = d 12 would imply d 14 + d 42 + d 34 = d 12 + d 34 and 
therefore d,, + d,, =G d,, + d,, which contradicts (17), we have also d,, + 
d,, > d,,; and a similar argument shows that d,, + dd2 > d,,. This proves our 
claim: otherwise D would not be compactified. 

Add now d,, to both sides of (22). Using (19) and (23), we obtain 
respectively 

d,, + d, = d,, + d,, + d,,>d, + d,,, 

d,, + d, = d,, + d,, + d,, = d,, + d43 + d,, + d,, ’ d,, + da. 

By Theorem E, ({ 1,3,4,5}) is non-tree-realizable. 

To complete the proof of the theorem, suppose that the compactified 
matrix D has a pendant index, say 5. Let i be such that d,, = dsj + di, for all 
r # 5. Without loss of generality, let i = 4. By Theorem E, any ({i, k,4,5}) is 
tree-realizable: among the sums d, + dik, dgi + dk4 =d, + dai + d,,, d,, 
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+ d,, = d, + ddk + ddi two are equal and not smaller than the third one. 
Hence, by Theorem B, ({ 1,2,3,4}) or ({ 1,2,3,5}) is non-tree-realizable. By 
Theorem E, both must be. 

This completes the proof of Theorem 3. n 

4. NON-TREE-REALIZABLE DISTANCE MATRICES OF ORDER n 

In what follows for i = 4 , . . . ,n, Q(D) denotes the number of principal, 
non-tree-realizable i X i submatrices of D. Bounds for Qi( D) will be derived 

and discussed. 

THEOREM 4. Let D be non-tree-realizable of order n. Then 

Qi(D)2(yri) for i=4,...,n. 

Proof. By Theorem B, the matrix D has a 4X4 non-tree-realizable 

submatrix, say ({1,2,3,4}). 
Denote by a,,..., an_-4 the indices of D other than 1,2,3,4. Obviously, 

({1,2,3,4,a,}),...,({I,2,3,4, a,_,}> are non-tree-realizable. By Theorem 3, 
each one contains at least two non-treerealizable submatrices of order 4. 
Therefore, besides ({ 1,2,3,4}), there is, for each ai, a non-tree-realizable 

matrix ({b,, b,, b,, aJ> with {b,, b,, b3} C {1,2,3,4}. This shows that 

QAD) > n -3, which is our statement for i = 4. 
For any i, n > i > 4, we may obtain an i X i non-tree-realizable submatrix 

of Deitherbyjoiningan(i-44>subsetof {al,...,an-4} tothe4set {1,2,3,4} 

or by joining an (i-4)-subset of {aj+l,...,an_4} to {b,, b,,b,,af}. The 
matrices obtained are all distinct, and there are at least 

which completes the proof of Theorem 4. n 

These lower bounds can be attained: consider the graph pictured in 
Figure 1, and replace one of the pendant edges, say (x4,4), by a tree with 
12 -3 external vertices 4, al ,..., an+. For further reference we call such a 
graph a P-graph. Assign lengths to the new edges. For the distance matrix D 
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arising from a P-graph, 

Q,(D)=( 71:) for i=4,...,n. 

Moreover, by Theorems G and 2, a P-graph is an optimal realization of its 
distance matrix. 

Our next statement generalizes Theorem 3. 

THEOREM 5. A non-tree-realizable distance matrix of order i contains at 
least i -3 non-tree-realizable submatrices of order j - 1. 

Proof. The statement is equivalent to saying that, if a matrix D of order i 
has 4 tree-realizable submatrices of order i - 1, then D is tree-realizable. Now 
let S={l,...,j} D=(S), and (S-{a}),(S-{b}),(S-{c}),(S-{d}) be 
tree-realizable. It follows that ({a, b, c, d}) is the only 4X 4 principal subma- 
trix of D which might be non-tree-realizable. This contradicts Theorem 4 and 
thus proves Theorem 5. H 

THEOREM 6. For i25, (n - i+1)Qi-1a(i-3)Qi. 

Proof. Besides Theorem 5, use the fact that each non-tree-realizable 
submatrix of order i - 1 is contained in n - i + 1 submatrices of order i. n 

The following describes the optimal realizations of a class of matrices. 

THEOREM 7. Optimal realizations of distance matrices D such that 

O,(D)=( r-3”) for i=4,...,n 

are P-graphs. 

Proof. First we claim that, when Q4( D) = n - 3, all non-tree-realizable 
submatrices of order 4 share a set of 3 indices. The claim is obvious for n = 5. 
Suppose n 2 6. As in the proof of Theorem 4, let ({ 1,2,3,4}) be non-tree- 
realizable, and for each a i E { 5,. . . , n} let ({b,, b,, b,, a!}) be non-tree-realiz- 
able for some set {b,, b,, b3} C { 1,2,3,4}. These are n - 4 + 1 non-tree-realiz- 
able submatrices. We show that they have the same set {b,, b,, b3}. In fact, if 
say ({b,, b,, b,, ai>> and ({b;, &, bj, a,}) are non-tree-realizable, then so 
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are ({b,, b,, b,, a,, aa}) and ({I&, b& b;, a,, a,}), and each one contains 
two 4 X 4 non-tree-realizable submatrices. Among these, either one contains a 1 
and ua in its index set (and it is distinct from the remaining n -3), or 
({b,, ba, b,,aa}) and ({b;, &,, bj, al}) are also non-tree-realizable (and dis- 
tinct from the remaining n -3). In both cases we would have Q4( 0) > n -3, 
which proves our claim. 

Without loss of generality, suppose that ({ 1,2,3, j}) for j = 4,. . . , n are the 
non-tree-realizable submatrices of D and that D is compactified for indices 
1,2,3. Let 1,3 (and 2,4) be the opposite indices in ({ 1,2,3,4}). We claim 
that 

To prove the claim, suppose d,, < d,, + d,. For some pair a, b, we must 
have d,, = d,, + d,,. Since 1,3 are opposite in ({1,2,3,4}), the pair a, b 
cannot be 4,3 or 4,1. We may therefore choose j~{5,...,n}n{u, b} and 
distinguish two cases: 

Case la. {a, b} = {i, l} or {a, b} = {j,3}. The arguments being similar 
for {i,I} and {j,3}, we give the details for the case when we have 

di, = di, + d,,. (25) 

By hypothesis, ({ 1,2,4, j}) and ({2,3,4, j}) are tree-realizable. Set A, = d 12 
+ d+ A, = d,, + d,/, A, = dIi + ds4, C, = d,, + d+, C, = d,, + dsj, C, = 

d,i + ds,. By (25), A,>A, and A,> A,. Since 2,4 are opposite in 
({1,2,3,4}), we cannot have d,, = d,, + d,,; hence A, # A,. Thus we have 
A, = A,, which means dbj = d, + d,,. It follows that C,=d, + dj, + d,, 
and, consequently, C, > C, and C, 2 C,. Now C, = C, if and only if dsi = d,, 
+ diz; we claim that this equality does not hold. In fact, by (25), di, + d,, = 
di,+d,,+d,>diz+d,,. By (25) and the fact that ({1,2,3,j}) is non- 
tree-realizable, we see that i, 1 and 2,3 are opposite, and this proves our claim. 
Therefore C, = C,, that is, d,, = d 23 + d,,. Since 2,4 are opposite in 
({ 1,2,3,4}), this is a contradiction. 

Cuselb. {u,b}={i,k} withkE{4,...,n}-{j}. Inthiscasewehave 

di, = di, + d,,. (26) 

We have also 

(27) 

(28) 
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we would have case la. Since ({ j, k}) is tree-realizable, setting 
G, = d,, + di, = d,, + di, + d,,, G, = dii + da,, G, = d,, + daj, we have, 
by (27), G, < G,. It follows that G, = G, and therefore dlk =dia + da,. Since 

((233, i, k}) is t ree-realizable, setting Hi = d 23 + d ik g d 23 + d i2 + d 2k, H, = 
dzi + d,,, H3 = d,, + dsj we have, by (28), H3 -C H,. It follows that Hi = Ha 
and thus d,, = d 23 + d,,. By hypothesis, ({ 1,2,3, k}) is non-tree-realizable. 
Setting F,=d,,+d8k-d12+d23+d2k, F,=d,,+d,,, F,=dlk+d23- 
d,, + d,, + d,, we have F, = F3 > F,, a contradiction. 

Our claim that (24) holds is thus proved. 
Now we claim that, for any i, 4 G i G n, 

d,, + dli = dsi = d,, + dsi. (29) 

We give a detailed proof for the first equality (the second is similar). Choose a 
fixed i and suppose that 

d,j < d,, + dli. 

By the hypothesis of compactification, for some pair a, b, d,, = d,, + d,,. By 
(24), (30), and the fact that 1,3 are opposite in ({1,2,3, i}), the pair a, b is 
neither3,2nori,2norj,3.Itisthereforek,3ork,2ork,iwithkE{4,...,n} 

- 01. 

Case 2a. Suppose d,, = d,, + d,,. The matrix ({ 1,2,3, k}) is non-tree- 
realizable. Setting A, = d,, + dsk E d,, + d,, + d,, + d,,, A, = d,, + d,, E 
d,, + d,, + d,,, A, = dlk + d,,, we get A, > A,, A, 2 A,; hence A, f A,, 
and thus we have 

4, < d,, + d,,. 

Now ((L3, i, k}) is t ree-realizable. Setting Z, = d 13 + d ik E d 12 + d 23 + djk> 
Z, = d,, + d,, = dlj + d,, + d,, + d,, Z, = d,, + dsj, we get Z, < Z, be- 
cause dzj <d,, + dli. Hence Z, = Z, and therefore dj, = d,, + dli. Further, 

({L%i,k}) . t IS ree-realizable. Setting W, = d,, + di, E d,, + d,, + dli, W, 
= d,i + d,,> W,=d,,+dzj, we get W,<W,; hence Wa=W,; this means 

d,, = d,, + d,,, which contradicts (31). 
Case 2b. Suppose d,, = d,, + d,,. The matrix ({ 1,2,3, k}) is non-tree- 

realizable. Setting Al=dlz+dsk, A,=d,,+dSk-d13+d12+dlk, A,= 
d,, + d,,, we get A,< A, and, by (24), A, < A,. We thus have A, < A,, 
which means 
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The matrix ({ 1,2, i, k}) is tree-realizable. Setting 2, = d,, + dik, 2, = dlj + 

d,, - dli + d,, + dlk, 2, = d,, + d,+ we get, by (30), Z, < Z,; hence Z, = 
Z,, which means dik=dli+dlk. Finally, ({1,3, j, k}) is tree-realizable. 
Setting W, = d,, + di, = d,, + dli + d,,, W, = dli + d,,, W, = d,, + dsi, we 

get, by (32), W, < WI; hence W, = W,, which means that dsj = d,, + d,/. 

This is impossible because 1,3 are opposite in ({ 1,2,3, i}). 
Case 2~. Suppose dki = d,, + dli, and i is neither 3 (case 2a) nor 2 (case 

2b). The matrix ({ 1,2, i, k}) is tree-realizable. Setting Z, = d 12 + di, g d 12 + 

di, + dlk, Z, = dli + d,,, Z, = dlk + dzj, we get Z,< Z, and, by (30), 
Z, < Z,. Hence Z, = Z,, which means d,, = d,, + d,,, which is case 2b. 

Our claim that (29) holds is thus proved. 
Now let G’ be a tree realization of ({ 1,3,4,. . . , n}). Let G be obtained 

from G’ by adding vertex 2 and edges (2,l) and (2,3) with weights d,, and 
d respectively. The graph G is a P-graph and realizes ({ 1,2,3,. . . , n}). As 
wy’have seen, P-graphs are optimal realizations. By Theorems G and 2, they 
are unique, which completes the proof of Theorem 7. n 

5. A FASTER ALGORITHM FOR TESTING TREE-REALIZABILITY 

Theorems B and E provide an algorithm to check whether an n X n 
distance matrix is tree-realizable. Such an algorithm requires apparently, in 

the worst case, 6 y 
( 1 

operations, since testing each principal submatrix of 

order 4 requires 3 sums and 3 comparisons. It is therefore polynomial of 
degree 4 in n. 

As a by-product of Theorem 4, an improvement of this algorithm may be 
obtained. As seen in the proof of Theorem 4, for each index 1 d j < n of a 
non-tree-realizable matrix D of order n there is a non-tree-realizable principal 
submatrix of order 4 which contains i. We therefore need only to test, in the 

worst case, n-l 
( 1 3 

principal submatrices of order 4, which corresponds to a 

polynomial of degree 3 in n. 

6. PRESCRIBING TREE-REALIZABILITY OF A GIVEN NUMBER OF 
SUBMATRICES: SOME EXTREMAL CASES 

By the definitions, for any distance matrix D of order n and for any k such 
that 4GkGn, we have 

Qk(DF( ;j. 
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If D has a tree-realizable submatrix D’ of order n - m, then all submatrices of 
D’ are tree-realizable. An immediate consequence is the following result. 

THEOREM 8. If for sme k such that 4 < k G n - m G n, 

then no submutrix of order n - m of D is tree-realizable. 

Even if these bounds seem weak, they have some value: Firstly, as we 
have shown, QJD) can be found in polynomial time; secondly, the problem 
of finding a tree-realizable submatrix of maximum order of a non-treerealiz- 
able distance matrix is NP-hard. This follows from work by Yannakakis [12], 
who proved that if ll is a property of graphs which is hereditary (this means, 
if G has Il, then all subgraphs of G have ll), interesting (graphs of arbitrarily 
large order may have ll) and nontrivial (some graphs do have Il, some do 
not), then, given a graph G, the problem of finding a maximum (induced) 
subgraph with ll is NP-hard. Our problem falls into this category. To each 
distance matrix D of order n we associate a complete graph G on n vertices 
whose edge weights are the entries of the matrix. G has property Il if a tree T 
can be found, a subset V of the vertex set of T can be specified, and an 
assignment of weights to the edges of T can be made so that the distances 
between the vertices in V along the paths of Tare the weights assigned to the 
edges of G. Obviously, ll is hereditary, interesting, and nontrivial; to find the 
maximum order of a submatrix of D which is tree-realizable is equivalent to 
finding the maximum subgraph of G which has ll. 

The bounds on Qk(D) which we present in this paper can be attained. 
Before giving examples, we recall the elementary fact that, in the euclidean 
plane, the sum of the lengths of the diagonals of a convex quadrilateral is 
always greater than the sum of the lengths of any two opposite sides. This 
means, by Theorem E, that the 4 X 4 matrix of the euclidean distances among 
the vertices of a plane convex quadrilateral is non-tree-realizable. It follows 
that, for the n X n matrix D whose entries are the euclidean distances 
between pairs of points of a set of n points lying on a circle, we have 

Qk(D)=( ;) for ka4 

Consider now a circle and a chord. Let n - 1 points &, . . . , &, lie on the 
chord, and i points (~i,. . . , ai lie on one of the arcs of the circle determined by 
the chord. The matrix D of order Q E i + n - 1 whose entries are the 



16 J. M. S. SIMOES-PEREIRA AND C. M. ZAMFIRESCU 

euclidean distances between pairs of points of this set has 

for 4 =G j G n - 1. In fact, the only submatrices of D which are tree-realizable 
are those whose entries are the distances between points lying on the chord. 

Matrices whose Q(D) attain our bounds and which have rational entries 
can also be given. The interested reader may verify the following results, 
using Theorem E and straightforward albeit lengthy calculations. 

THEOREM 9. Let n and p be integers, p > Zn’, and D be a symmetric 
matrix of order n whose entries are, for y > x, d,, = y - x + l/(y - x + p). 

Then D is a distance matrix and 

Q(D)=(y) for i=4,...,n. 

THEOREM 10. Let p, i, k, n be positive integers, i 2 2, n S= 5, k > 2(4i + 

2~t)~, andp=2k+3i+2n>2(k+i+n). Let D=({(Y~ ,..., ai,& ,..., p,,}) 

be a symmetric matrix of order q G n + i - 1 whose entries are defined as 

follows: 

d,,=O for X=a,,...,ffj,P2,“‘,P”, 

d a,,ah=m-h+l/(m-h+p) for all m and h, 

dpxBy= 2(y - r)i for all x and y, 

d ,,pz=i(n-2)+l/(~+r) for all r, 

d ,,flz=in+r-4+l/(r+k+x-4) for 3GxG[(n+1)/2], 

d a,g,=in+n-~-2+l/(r+k+x-4) for [(n+l)/2]<x~n-1, 

d a,& = i(n -2)-l/(p + r) for all r. 

ThenDisadistancematrix,andfor4<i<n+i-I-i=n-1, 

o,(D)=( ;)-( “;“I. 
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Thanks are due to Professor Wi&ied lmrich for suggestions leading to a 
substantially shorter proof of Theorem 2 and for contributing the geometri- 
cally constructed examples which we present before our Theorems 9 and 10 in 
Section 6. Thanks are also due to Professor Andreas L?ress for pointing out to 
us the work done by Professor Manfred Eigen and others on genetic informa- 
tion and for sending us his unpublished manuscript “A characterization of 
tree like metric spaces or how to construct an evolutionary tree.” 
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